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1. Introduction

Extra dimensional field theories, in particular string-derived extra dimensional field theo-

ries, play an important role in particle physics as well as cosmology. When we start with

extra dimensional theories, how to realize chiral theory is one of important issues from

the viewpoint of particle physics. Introducing magnetic fluxes in extra dimensions is one

way to realize chiral fermions in field theories and superstring theories [1 – 8]. In partic-

ular, magnetized D-brane models are T-duals of intersecting D-brane models and several

interesting models have been constructed within the framework of intersecting D-brane

models [4 – 6, 9 – 11].1

The generation number in magnetized extra dimensional models is fixed by the mag-

netic flux in the same way that the generation number in intersecting D-brane models

is fixed by the intersecting number. Yukawa couplings as well as other couplings in four-

dimensional effective field theory can be calculated in magnetized extra dimensional models

as the overlapping integral of wave functions in the extra dimensional space. We would

obtain hierarchically small Yukawa couplings when the overlap integral of wave functions

is suppressed, that is, zero-modes are quasi-localized far away from each other in extra

1See for a review [12] and references therein.
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dimensions. On the other hand, we would obtain Yukawa couplings of O(1) when the

overlap integral is not suppressed. That is an interesting aspect for the purpose to realize

hierarchical patterns of quark/lepton mass matrices. Indeed, Yukawa couplings on mag-

netized torus have been computed in [7] and it has been shown that the results are the

same as those in intersecting D-brane models. However, it is still a challenging issue to

derive proper generation numbers and realistic quark/lepton masses and mixing angles in

magnetized extra dimensional models as well as intersecting D-brane models.

In this paper, we study orbifold models with non-vanishing magnetic fluxes, in partic-

ular N=1 super Yang-Mills theory on such a background. Orbifolding the extra dimensions

is another way to derive chiral theories [13]. We will show that four-dimensional effective

field theories on magnetized orbifolds have a rich structure and they lead to interesting

aspects, which do not appear in magnetized torus models. In particular, it will be found

that a new type of flavor structures can appear. We also show semi-realistic models on

magnetized orbifolds.

Organization of the paper is as follows. In section 2, we study (4+2n)-dimensional N=1

super Yang-Mills theory, whose extra dimensions are torus with non-vanishing magnetic

fluxes. We study fermionic and bosonic fields on the magnetized torus and the flavor

structure of four-dimensional effective field theories. Most of section 2 is a review. (See

e.g. [7].) In section 3, we study the same D-dimensional N=1 super Yang-Mills theory, but

the toroidal orbifold background geometry with non-vanishing magnetic fluxes. We study

wavefunctions of fermionic and bosonic fields in the compact space, and flavor structure.

We will show semi-realistic models. Section 4 is devoted to conclusion and discussion. In

appendix, we give two examples of models.

2. Magnetized torus models

2.1 Extra dimensional super Yang-Mills theory

Let us consider N = 1 super Yang-Mills theory in D = 4 + 2n dimensions. Its Lagrangian

density is given by

L = − 1

4g2
Tr
(

FMNFMN

)

+
i

2g2
Tr
(

λ̄ΓMDMλ
)

, (2.1)

where M,N = 0, . . . , (D− 1). Here, λ denotes gaugino fields, ΓM is the gamma matrix for

D dimensions and the covariant derivative DM is given as

DMλ = ∂Mλ− i[AM , λ], (2.2)

where AM is the vector field. Furthermore, the field strength FMN is given by

FMN = ∂MAN − ∂NAM − i[AM , AN ]. (2.3)

We consider the torus (T 2)n as the extra dimensional compact space, whose coordinates

are denoted by ym (m = 4, . . . , 2n+3), while the coordinates of four-dimensional uncompact

space R3,1 are denoted by xµ (µ = 0, . . . , 3). We use orthogonal coordinates and choose the

– 2 –
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torus metric such that ym is identified by ym + nm with nm = integer. The gaugino fields

λ and the vector fields Am corresponding to the compact directions are decomposed as

λ(x, y) =
∑

n

χn(x) ⊗ ψn(y), (2.4)

Am(x, y) =
∑

n

ϕn,m(x) ⊗ φn,m(y). (2.5)

2.2 U(1) gauge theory on magnetized torus T 2

First, let us consider U(1) gauge theory on T 2 with the coordinates (y4, y5). We study the

non-vanishing constant magnetic flux F45 = 2πM . We use the following gauge,

A4 = 0, A5 = 2πMy4. (2.6)

Then, their boundary conditions can be written as

Am(y4 + 1, y5) = Am(y4, y5) + ∂mχ4, χ4 = 2πMy5,

Am(y4, y5 + 1) = Am(y4, y5) + ∂mχ5, χ5 = 0. (2.7)

Now, we study the spinor field ψ(y) with the U(1) charge q = ±1 on T 2, which

corresponds to the compact part in the decomposition (2.4). The zero-mode satisfies the

following equation,

Γ̃m(∂m − iqAm)ψ(y) = 0, (2.8)

for m = 4, 5, where Γ̃m corresponds to the gamma matrix for the two-dimensional torus

T 2, e.g.

Γ̃4 =

(

0 1

1 0

)

, Γ̃5 =

(

0 −i
i 0

)

, (2.9)

and ψ(y) is the two component spinor,

ψ =

(

ψ+

ψ−

)

. (2.10)

Because of (2.7), the spinor field satisfies the following boundary condition,

ψ(y4 + 1, y5) = eiqχ4ψ(y4, y5) = e2πiqMy5ψ(y4, y5), (2.11)

ψ(y4, y5 + 1) = eiqχ5ψ(y4, y5) = ψ(y4, y5). (2.12)

The consistency for the contractible loop, i.e. (y4, y5) → (y4 + 1, y5) → (y4 + 1, y5 + 1),

requires M = integer. Because of the periodicity along y5, ψ± can be written by

ψ±(y4, y5) =
∑

n

c±,n(y4)e
2πiny5 . (2.13)

Suppose that qM > 0. Then, the solution for the zero-mode equation of ψ+ is given by

c+,n(y4) = k+,ne
−πqMy2

4
+2πny4 , (2.14)

– 3 –
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where k+,n is a constant. Furthermore the boundary condition requires

k+,n = ane
−πn2/(qM), (2.15)

and an+qM is equal to an, i.e. an+qM = an. Thus, there are |M | independent zero modes

of ψ+, which have normalizable wave functions,

Θj(y4, y5) = Nje
−Mπy2

4ϑ

[

j/M

0

]

(M(y4 + iy5),Mi) , (2.16)

for j = 0, . . . ,M − 1, where Nj is a normalization constant and

ϑ

[

j/M

0

]

(M(y4 + iy5),Mi) =
∑

n

e−Mπ(n+j/M)2+2π(n+j/M)M(y4+iy5), (2.17)

that is, the Jacobi theta-function. We can introduce the complex structure modulus τ by

replacing the above Jacobi theta-function as

ϑ

[

j/M

0

]

(M(y4 + iy5),Mi) → ϑ

[

j/M

0

]

(M(y4 + τy5),Mτ) . (2.18)

Thus, zero-mode wave functions depend on only the complex structure modulus, but not

the overall size of T 2. Furthermore, there is the degree of freedom to shift ym → ym + dm

with constants dm. They correspond to constant Wilson lines.

On the other hand, the zero-modes equation for ψ− can be solved in a similar way, but

their wave functions are unnormalizable. Hence, we can derive chiral theory by introducing

magnetic fluxes. When qM < 0, ψ− has |M | independent zero modes with normalizable

wave functions, while zero modes for ψ+ have unnormalizable wave functions. Bosonic

fields are analyzed in a similar way. (See e.g. [7].)

2.3 U(N) gauge theory on magnetized torus T 2

Here, we study U(N) gauge theory on T 2. Let us consider the following form of (abelian)

magnetic flux

F45 = 2π







M11N1×N1
0

. . .

0 Mn1Nn×Nn






, (2.19)

where 1Na×Na
denotes (Na × Na) identity matrix. This abelian magnetic flux breaks the

gauge group as U(N) → ∏n
a=1 U(Na) with N =

∑

aNa. The rank is not reduced by the

abelian magnetic flux. When we consider non-abelian magnetic flux, i.e. the toron back-

ground [14], the rank can be reduced.2 However, here we restrict ourselves to the abelian

flux.

2See e.g. [15, 16] and references therein.
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Now, let us study gaugino fields on this background. We focus on the block including

only U(Na) × U(Nb) and such a block has the following magnetic flux,

F45 = 2π

(

Ma1Na×Na
0

0 Mb1Nb×Nb

)

. (2.20)

We use the same gauge as (2.6), i.e.

A4 = 0, A5 = F45y4. (2.21)

Similarly, the gaugino fields λ in R3,1 × T 2 are decomposed as

λ(x, y) =

(

λaa(x, y) λab(x, y)

λba(x, y) λbb(x, y)

)

. (2.22)

Furthermore these gaugino fields are decomposed as (2.4),

λaa(x, y) =
∑

n

χaa
n (x) ⊗ ψaa

n (y), λab(x, y) =
∑

n

χab
n (x) ⊗ ψab

n (y),

λba(x, y) =
∑

n

χba
n (x) ⊗ ψba

n (y), λbb(x, y) =
∑

n

χbb
n (x) ⊗ ψbb

n (y). (2.23)

Each of ψaa, ψab, ψba and ψbb is a two-component spinor (ψ+, ψ−)T . Their zero-modes

satisfy







∂̄ψaa
+ [∂̄ + 2π(Ma −Mb)y4]ψ

ab
+

[∂̄ + 2π(Mb −Ma)y4]ψ
ba
+ ∂̄ψbb

+






= 0, (2.24)







∂ψaa
− [∂ − 2π(Ma −Mb)y4]ψ

ab
−

[∂ − 2π(Mb −Ma)y4]ψ
ba
− ∂ψbb

−






= 0, (2.25)

where ∂̄ = ∂4 + i∂5 and ∂ = ∂4 − i∂5.

The zero-modes of ψaa and ψbb correspond to four-dimensional massless gauginos for

the unbroken gauge group U(Na)× U(Nb). Dirac equations of ψaa(y) and ψbb(y) in (2.24)

and (2.25) do not include any magnetic fluxes. That is, both of ψ± have the same zero-

modes as those on T 2 without magnetic fluxes.

Next, we study spinor fields, λab and λba, which correspond to bi-fundamental matter

fields, (Na, N̄b) and (N̄a, Nb) for the unbroken gauge group U(Na) × U(Nb). When Ma −
Mb > 0, λab

+ and λba
− have (Ma −Mb) zero-modes with normalizable wave functions, i.e.

Θj(y4, y5) for j = 0, . . . , (Ma −Mb − 1) as (2.16), but zero-mode wave functions of λab
−

and λba
+ are unnormalizable. On the other hand, when Ma −Mb < 0, λab

− and λba
+ have

(Mb −Ma) normalizable zero-modes. Hence, we obtain chiral theory. We have the degree

of freedom of the constant shift ym → ym + dm.

Similarly, we can analyze bosonic fields Am. In general, introduction of non-vanishing

magnetic fluxes on T 2 breaks supersymmetry completely.

– 5 –
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2.4 U(N) gauge theory on (T 2)3

Here, we extend the previous analysis to U(N) gauge theory on (T 2)3. We consider the

magnetic background, where only F45, F67 and F89 are non-vanishing, but the others of

Fmn are vanishing. Furthermore, F45, F67 and F89 are given by

F45 = 2π









M
(1)
1 1N1×N1

0
. . .

0 M
(1)
n 1Nn×Nn









,

F67 = 2π









M
(2)
1 1N1×N1

0
. . .

0 M
(2)
n 1Nn×Nn









, (2.26)

F89 = 2π









M
(3)
1 1N1×N1

0
. . .

0 M
(3)
n 1Nn×Nn









.

This background breaks the gauge group U(N) as U(N) →
∏n

a=1 U(Na) with N =
∑

aNa.

We can study gaugino fields on this background as a simple extension of the previous

section 2.3. That is, we focus on the block including only U(Na)×U(Nb) and such a block

has the following magnetic flux as (2.20),

F2i+2,2i+3 = 2π

(

M
(i)
a 1Na×Na

0

0 M
(i)
b 1Nb×Nb

)

, (2.27)

and we use the following gauge

A2i+2 = 0, A2i+3 = y2i+2F2i+2,2i+3, (2.28)

for i = 1, 2, 3. Then, we decompose the gaugino fields λ(x, y) as (2.4), i.e. the four-

dimensional part χ(x) and the i-th T 2 part ψ(i)(y2i+2, y2i+3), whose zero modes satisfy







∂̄iψ
aa
(i)+ [∂̄i + 2π(M

(i)
a −M

(i)
b )y2i+2]ψ

ab
(i)+

[∂̄i + 2π(M
(i)
b −M

(i)
a )y2i+2]ψ

ba
(i)+ ∂̄iψ

bb
(i)+






= 0,

(2.29)






∂iψ
aa
(i)− [∂i − 2π(M

(i)
a −M

(i)
b )y2i+2]ψ

ab
(i)−

[∂i − 2π(M
(i)
b −M

(i)
a )y2i+2]ψ

ba
(i)− ∂iψ

bb
(i)−






= 0,

where ∂̄i = ∂2i+2 + i∂2i+3 and ∂i = ∂2i+2 − i∂2i+3.

The gaugino fields, ψaa and ψbb, for the unbroken gauge symmetry have no effect

from magnetic fluxes in their Dirac equations. Hence, they have the same zero-modes

as those on (T 2)3 without magnetic fluxes. On the other hand, ψab and ψba corre-

spond to bi-fundamental matter fields, (Na, N̄b) and (N̄a, Nb). For the i-th T 2 with

– 6 –
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M
(i)
a −M

(i)
b > 0, ψab

(i)+ and ψba
(i)− have |M (i)

a −M
(i)
b | normalizable zero-modes, while ψab

(i)−

and ψba
(i)+ have no normalizable zero-modes. When M

(i)
a − M

(i)
b < 0, ψab

(i)− and ψba
(i)+

have |M (i)
a −M

(i)
b | normalizable zero-modes. Then, the total number of bi-fundamental

zero-modes is given by
∏3

i=1 |M
(i)
a −M

(i)
b | and all of them have the same six-dimensional

chirality sign
[

∏3
i=1(M

(i)
a −M

(i)
b )
]

. Since the ten-dimensional chirality of gaugino fields

is fixed, bi-fundamental zero-modes for either (Na, N̄b) or (N̄a, Nb) appear with a fixed

four-dimensional chirality. To summarize, the total number of bi-fundamental zero-modes

for (Na, N̄b) is equal to

Iab =

3
∏

i=1

(M (i)
a −M

(i)
b ), (2.30)

and their wave functions are given by a product of two-dimensional parts, i.e.

Θi1,i2,i3(y) = Θi1(y4, y5)Θ
i2(y6, y7)Θ

i3(y8, y9), (2.31)

for i1 = 0, . . . , (M
(1)
a −M

(1)
b − 1), i2 = 0, . . . , (M

(2)
a −M

(2)
b − 1) and i3 = 0, . . . , (M

(3)
a −

M
(3)
b − 1). For Iab < 0, this means that there appear |Iab| independent zero modes for

(N̄a, Nb). It is also convenient to introduce the notation, Ii
ab ≡M

(i)
a −M

(i)
b .

Similarly, we can analyze bosonic fields corresponding to Am for m = 4, . . . , 9. For

generic values of magnetic fluxes, supersymmetry is broken completely. However, when

they satisfy the following condition [8, 7],

3
∑

i=1

±M
(i)
a −M

(i)
b

A(i)
= 0, (2.32)

for one combination of signs, where A(i) denotes the area of the i-th torus, there appear

massless scalar modes as well as massive modes and four-dimensional N=1 supersymmetry

remains unbroken at least in the a− b sector. When we consider A(i) as free parameters,

we can realize the above supersymmtric condition (2.32) for most cases by choosing proper

values of A(i). For the case with the universal area, A(1) = A(2) = A(3), the above

condition (2.32) reduces to
3
∑

i=1

±(M (i)
a −M

(i)
b ) = 0. (2.33)

In addition to (2.32), when one of them is vanishing, i.e. (M
(i)
a −M

(i)
b ) = 0 and

∑

j 6=i

±M
(j)
a −M

(j)
b

A(j)
= 0, (2.34)

four-dimensional N=2 supersymmetry is unbroken. In these supersymmetric models, zero-

mode profiles of bosonic fields are the same as their superpartners, that is, zero-mode

profiles of fermionic fields.

– 7 –
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2.5 U(Na) × U(Nb) × U(Nc) models with three families

Here, we consider an illustrating model with the unbroken gauge group U(Na) × U(Nb) ×
U(Nc), which is derived from ten-dimensional U(N) super Yang-Mills theory on R3,1×(T 2)3

with the magnetic fluxes as in the previous section. We assume that the magnetic fluxes

satisfy the supersymmetric condition (2.32) and massless scalar fields appear as partners of

massless spinor fields with bi-fundamental representations. In addition to supersymmetric

vector multiplets for the gauge group U(Na) × U(Nb) × U(Nc), the massless spectrum of

this model includes three types of bi-fundamental matter fields, (Na, N̄b), (Nb, N̄c) and

(Nc, N̄a). This class of models include the SU(4) × SU(2)L × SU(2)R Pati-Salam model

for Na = 4, Nb = 2 and Nc = 2.3 In this case, bi-fundamental matter fields (4, 2, 1),

(4̄, 1, 2) and (1, 2, 2) under SU(4)×SU(2)L×SU(2)R include left-handed quarks and leptons

in (4, 2, 1), the up- and down-sectors of right-handed quarks and right-handed charged

leptons and neutrinos in (4̄, 1, 2) and up- and down-sectors of Higgs fields in (1, 2, 2).

Indeed, in intersecting D-brane models it is a convenient way that first one constructs

the supersymmetric Pati-Salam model and then breaks it to the minimal supersymmetric

standard model (MSSM) in order to realize the MSSM-like models within the framework of

intersecting D-brane models. (See e.g. [11, 18] and references therein.)4 For the purpose to

derive a semi-realistic model, we consider the realization of three families of (Na, N̄b) and

(N̄a, Nc) matter fields, i.e. Iab = Ica = 3. Yukawa couplings among (Na, N̄b) and (N̄a, Nc)

matter fields and (Nb, N̄c) Higgs fields in four-dimensional effective theory are given by the

overlap integral of zero-mode wave functions (2.31) in extra dimensions [17],

Y ijk = g

∫

dy Θi1,i2,i3(y) · Θj1,j2,j3(y) · Θk1,k2,k3(y), (2.35)

in the canonically normalized basis.

Now, let us study U(Na) × U(Nb) × U(Nc) models, which lead to three families of

(Na, N̄b) and (N̄a, Nc), i.e. Iab =
∏3

i=1 I
i
ab = 3 and Ica =

∏3
i=1 I

i
ca = 3. First, it is

straightforward to show that we can not derive three-family models, which satisfy the

condition (2.33), that is, it is difficult to realize supersymmetric three-family models from

ten-dimensional super Yang-Mills theory with the universal area of tori. Thus, we study

models with the condition (2.32).

For generic model building with the condition (2.32), we can construct three-family

models. Magnetic fluxes leading to three families are classified into two classes. One class

corresponds to the following magnetic fluxes,

(|I(1)
ab |, |I(2)

ab |, |I(3)
ab |) = (3, 1, 1), (|I(1)

ca |, |I(2)
ca |, |I(3)

ca |) = (1, 3, 1), (2.36)

and their permutations, and the other corresponds to

(|I(1)
ab |, |I(2)

ab |, |I(3)
ab |) = (3, 1, 1), (|I(1)

ca |, |I(2)
ca |, |I(3)

ca |) = (3, 1, 1), (2.37)

3
U(1)3 would be anomalous and their gauge bosons would become massive through the Green-Schwarz

mechanism.
4See e.g. for the Pati-Salam model from heterotic orbifold models [19], where SU(4)× SU(2)L × SU(2)R

is broken to the standard gauge group by vacuum expectation values of scalar fields, (4, 1, 2) and (4̄, 1, 2),

while in the intersecting D-brane models SU(4) × SU(2)L × SU(2)R is broken by splitting D-branes, that

is, vacuum expectation values of adjoint scalar fields.

– 8 –
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and their permutations. Hence, we can realize the restricted flavor structure. Moreover,

the number of Higgs fields are constrained because |I(i)
bc | = | ± I

(i)
ab ± I

(i)
ca |.5 For example, in

the first class of models (2.36) we would obtain

|I(1)
bc | = 4 or 2, |I(2)

bc | = 4 or 2, |I(3)
bc | = 2 or 0, (2.38)

and the total Higgs number would be equal to
∏

i |I
(i)
bc | = 0, 8, 16, 32. On the other hand,

in the second class of models (2.37), we would obtain

|I(1)
bc | = 6 or 0, |I(2)

bc | = 2 or 0, |I(3)
bc | = 2 or 0, (2.39)

and the total Higgs number would be equal to
∏

i |I
(i)
bc | = 0, 24. Thus, the total Higgs num-

ber would be quite large except the models without Higgs fields. Therefore, for phenomeno-

logical applications, it would be important to make the flavor structure richer. That is the

purpose of the next section including model building with smaller number of Higgs fields.

3. Magnetized orbifold models

3.1 U(1) gauge theory on magnetized orbifold T 2/Z2

Now, let us study U(1) gauge theory on the orbifold T 2/Z2 with the coordinates (y4, y5),

which are transformed as

y4 → −y4, y5 → −y5, (3.1)

under the Z2 orbifold twist. Then, we introduce the same magnetic flux F45 = 2πM as one

in section 2.2 and use the same gauge as (2.6). Note that this magnetic flux is invariant

under the Z2 orbifold twist.

We study the spinor field ψ(y) on the above background. The spinor field ψ(y) with

the U(1) charge q = ±1 satisfies the same equation as one on T 2, i.e. (2.8). Then, we

require ψ(y) transform under the Z2 twist as

ψ(−y4,−y5) = (−i)Γ̃4Γ̃5Pψ(−y4,−y5), (3.2)

where P depends on the charge q like P = (−1)q+n with n = integer and it should satisfy

P 2 = 1. Suppose that qM > 0. Then, there are M independent zero-modes for ψ when we

do not take into account the Z2 projection. However, some of them are projected out by

the above Z2 boundary condition. For example, for (−i)Γ̃4Γ̃5P = 1, only even functions

remain, while only odd functions remain for (−i)Γ̃4Γ̃5P = −1. Note that

Θj(−y4,−y5) = ΘM−j(y4, y5), (3.3)

where ΘM (y4, y5) = Θ0(y4, y5). That is, even and odd functions are given by

Θj
even =

1√
2
(Θj + ΘM−j), (3.4)

Θj
odd =

1√
2
(Θj − ΘM−j), (3.5)

5Similar results have been obtained in intersecting D-brane models [20, 21], which are T-duals of mag-

netized D-brane models.
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M 0 1 2 3 4 5 6 7 8 9 10

even 1 1 2 2 3 3 4 4 5 5 6

odd 0 0 0 1 1 2 2 3 3 4 4

Table 1: The numbers of zero-modes with even and odd wave functions.

respectively. Hence, for M = 2k with k = integer and k > 0, the number of zero-modes

ψ+ for P = 1 and P = −1 are equal to k + 1 and k − 1, respectively. On the other

hand, for M = 2k + 1 with k = integer and k ≥ 0, the number of zero-modes ψ+ for

P = 1 and P = −1 are equal to k + 1 and k, respectively. It is interesting that odd

functions can correspond to zero-modes in magnetized orbifold models. On the orbifold

with vanishing magnetic fluxM = 0, odd modes correspond to not zero-modes, but massive

modes. However, odd modes, which would correspond to massive modes for M = 0, mix to

lead to zero-modes in the case with M 6= 0. It would be convenient to write these results

explicitly for later discussions. Table 1 shows the numbers of zero-modes with even and

odd wave functions for M ≤ 10. Note that the degree of constant shift ym → ym + dm,

which we have on the torus, is ruled out on the orbifold.

3.2 U(N) gauge theory on magnetized orbifold T 2/Z2

Now, let us study U(N) gauge theory on the orbifold T 2/Z2. We consider the same magnetic

flux as (2.19), which breaks the gauge group U(N) →
∏n

a=1 U(Na). Furthermore, we

associate the Z2 twist with the Z2 action in the gauge space as

Aµ(x,−y) = PAµ(x, y)P−1, Am(x, y) = −PAm(x, y)P−1. (3.6)

In general, the Z2 boundary condition breaks the gauge group
∏n

a=1 U(Na) further. For

simplicity, here we restrict ourselves to the Z2 action, which remains the gauge group
∏n

a=1 U(Na) unbroken. Thus, the Z2 action is trivial for the unbroken gauge group, but it

is not trivial for spinor fields as well as scalar fields.

Here, let us study spinor fields. We focus on the U(Na) × U(Nb) block (2.20) and use

the same gauge as (2.6), i.e. A4 = 0 and A5 = F45y4. We consider the spinor fields, λaa
± ,

λab
± , λba

± and λbb
± , where ± denotes the chirality in the extra dimension like (2.10). Their

Z2 boundary conditions are given by

λ±(x,−y) = ±Pλ±(x, y)P−1, (3.7)

for λaa
± , λab

± , λba
± and λbb

± . First, we study the gaugino fields, λaa
± and λbb

± for the unbroken

gauge group. Since the Z2 action P is trivial for the unbroken gauge indices, the above Z2

boundary conditions reduce to λaa
± (x,−y) = ±λaa

± (x, y) and λbb
±(x,−y) = ±λbb

±(x, y). In

addition, the magnetic flux does not appear in their zero-mode equations. Thus, λaa
+ (x, y)

as well as λbb
+(x, y) has a zero-mode, but λaa

− (x, y) and λbb
−(x, y) are projected out by the

Z2 orbifold projection as the usual Z2 orbifold without the magnetic flux.

Next, let us study the bi-fundamental matter fields λab
± and λba

± . The magnetic flux

Ma − Mb appears in their zero-mode equations. Without the Z2 projection, there are
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|Ma −Mb| zero modes. For example, when Ma −Mb > 0, λab
+ as well as λba

− has (Ma −Mb)

zero modes with the wave functions Θj for j = 0, . . . , (Ma −Mb − 1). When we consider

the Z2 projection, either even or odd modes remain. For example, when we consider the

projection P such that λab
+ (x,−y) = λab

+ (x, y), only zero-modes corresponding to Θj
even

remain and the number of zero-modes is equal to (Ma −Mb)/2 + 1 for (Ma −Mb) = even

and (Ma −Mb + 1)/2 for (Ma −Mb) = odd. On the other hand, when we consider the

projection P such that λab
+ (x,−y) = −λab

+ (x, y), only zero-modes corresponding to Θj
odd

remain and the number of zero-modes is equal to (Ma −Mb)/2 − 1 for (Ma −Mb) = even

and (Ma −Mb − 1)/2 for (Ma −Mb) = odd. The same holds true for λba
− . Furthermore,

when Ma −Mb < 0, the situation is the same except replacing (Ma −Mb), λ
ab
+ and λba

− by

|Ma −Mb|, λab
− and λba

+ , respectively.

The 3-point couplings among modes corresponding to the wave functions, Θi
even,odd,

Θj
even,odd and Θk

even,odd are given by the overlap integral like (2.35). Note that
∫

dy Θi
even(y) · Θj

even(y) · Θk
odd(y) =

∫

dy Θi
odd(y) · Θj

odd(y) · Θk
odd(y) = 0, (3.8)

while
∫

dy Θi
even(y)·Θj

odd(y)·Θk
odd(y) and

∫

dy Θi
even(y)·Θj

even(y)·Θk
even(y) are nonvanishing.

3.3 U(N) gauge theory on magnetized orbifolds T 6/Z2 and T 6/(Z2 × Z ′
2)

Here, we can extend the previous analysis on the two-dimensional orbifold T 2/Z2 to the

U(N) gauge theory on the six-dimensional orbifolds T 6/Z2 and T 6/(Z2 ×Z ′
2). We consider

two types of six-dimensional orbifolds, T 6/Z2 and T 6/(Z2 × Z ′
2). For the orbifold T 6/Z2,

the Z2 twist acts on the six-dimensional coordinates ym (m = 4, . . . , 9) as

ym → −ym (for m = 4, 5, 6, 7), yn → yn (for n = 8, 9). (3.9)

In addition to this Z2 action, we introduce another independent Z ′
2 action,

ym → −ym (for m = 4, 5, 8, 9), yn → yn (for n = 6, 7), (3.10)

for the orbifold T 6/(Z2 × Z ′
2). If magnetic flux is vanishing, we realize four-dimensional

N=2 and N=1 supersymmetric gauge theories for the orbifolds, T 6/Z2 and T 6/(Z2 × Z ′
2),

respectively.

Now, let us introduce the same magnetic flux as (2.26). The gauge group U(N) is

broken as U(N) → ∏n
a=1 U(Na) with N =

∑

aNa. This magnetic flux is invariant under

both Z2 and Z ′
2 actions. Furthermore, we associate the Z2 and Z ′

2 twists with the Z2 and

Z ′
2 actions in the gauge space as

Aµ(x,−ym, yn) = PAµ(x,−ym, yn)P−1,

Am(x,−ym, yn) = −PAm(x,−ym, yn)P−1, (3.11)

An(x,−ym, yn) = PAn(x,−ym, yn)P−1,

for m = 4, 5, 6, 7 and n = 8, 9, and

Aµ(x,−ym, yn) = P ′Aµ(x,−ym, yn)P ′−1
,

Am(x,−ym, yn) = −P ′Am(x,−ym, yn)P ′−1
, (3.12)

An(x,−ym, yn) = P ′An(x,−ym, yn)P ′−1
,
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for m = 4, 5, 8, 9 and n = 6, 7. In general, these Z2 boundary conditions break the gauge

group
∏n

a=1 U(Na) further. For simplicity, here we restrict to the Z2 and Z ′
2 projections,

which remain the gauge group
∏n

a=1 U(Na) unbroken. That is, both the Z2 and Z ′
2 actions

are trivial for the unbroken gauge group.

Now, we study spinor fields. We focus on the U(Na) × U(Nb) block as (2.27) and

use the same gauge as (2.28). We consider the spinor fields λaa
s1,s2,s3

, λab
s1,s2,s3

, λba
s1,s2,s3

and

λbb
s1,s2,s3

, where si denotes the chirality corresponding to the i-th T 2. Their Z2 boundary

conditions are given by

λs1,s2,s3
(x,−ym, yn) = s1s2Pλs1,s2,s3

(x, ym, yn)P−1, (3.13)

with m = 4, 5, 6, 7 and n = 8, 9 for λaa
s1,s2,s3

, λab
s1,s2,s3

, λba
s1,s2,s3

and λbb
s1,s2,s3

. Similarly, the

Z ′
2 boundary conditions are given by

λs1,s2,s3
(x,−ym, yn) = s1s3P

′λs1,s2,s3
(x, ym, yn)P ′−1, (3.14)

with m = 4, 5, 8, 9 and n = 6, 7.

First, we study the gaugino fields λaa
s1,s2,s3

and λbb
s1,s2,s3

for the unbroken gauge group.

Their zero-mode equations have no effect due to magnetic fluxes, but only the Z2 and

Z ′
2 orbifold twists play a role. Since the Z2 and Z ′

2 twists, P and P ′, are trivial for the

unbroken gauge sector, the boundary conditions are given by

λaa(bb)
s1,s2,s3

(x,−ym, yn) = s1s2λ
aa(bb)
s1,s2,s3

(x, ym, yn) for Z2, (3.15)

with m = 4, 5, 6, 7 and n = 8, 9, and

λaa(bb)
s1,s2,s3

(x,−ym, yn) = s1s3λ
aa(bb)
s1,s2,s3

(x, ym, yn) for Z ′
2, (3.16)

with m = 4, 5, 8, 9 and n = 6, 7. Hence, zero modes of λ
aa(bb)
+,+,± and λ

aa(bb)
−,−,± survive on T 6/Z2,

that is, two kinds of gaugino fields with a fixed four-dimensional chirality. Furthermore,

on T 6/(Z2 ×Z ′
2), zero modes of λ

aa(bb)
+,+,+ and λ

aa(bb)
−,−,− survive, that is, a single sort of gaugino

fields with a fixed four-dimensional chirality.

Next, let us study the bi-fundamental matter fields, λab
s1,s2,s3

and λba
s1,s2,s3

. Without the

Z2 projection, they have zero-modes, whose number is Iab = I1
abI

2
abI

3
ab and wave functions

are given by Θj1(y4, y5)Θ
j2(y6, y7)Θ

j3(y8, y9) (ji = 0, . . . , (Ii
ab−1)). We assume that Ii

ab > 0

for i = 1, 2, 3. Then, the zero-modes correspond to λab
+,+,+. On T 6/Z2, some of them are

projected out. Suppose that the Z2 boundary condition is given by

λab
s1,s2,s3

(x,−ym, yn) = s1s2λ
ab
s1,s2,s3

(x, ym, yn), (3.17)

with m = 4, 5, 6, 7 and n = 8, 9. Then, surviving zero-modes correspond

to Θj1
even(y4, y5)Θ

j2
even(y6, y7)Θ

j3(y8, y9) and Θj1
odd(y4, y5)Θ

j2
odd(y6, y7)Θ

j3(y8, y9). Further

modes are projected out on T 6/(Z2 × Z ′
2). Suppose that the Z ′

2 boundary condition is

given by

λab
s1,s2,s3

(x,−ym, yn) = s1s3λ
ab
s1,s2,s3

(x, ym, yn), (3.18)
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with m = 4, 5, 8, 9 and n = 6, 7. Then, the surviving modes through the

Z2 × Z ′
2 projection correspond to Θj1

even(y4, y5)Θ
j2
even(y6, y7)Θ

j3
even(y8, y9) and

Θj1
odd(y4, y5)Θ

j2
odd(y6, y7)Θ

j3
odd(y8, y9). Similarly, we can analyze surviving zero-modes

through the Z2 × Z ′
2 projection in the models with different signs of Ii

ab and different

Z2×Z ′
2 projections. It would be convenient to introduce the notation, Ii

ab(even) and Ii
ab(odd),

such that Ii
ab(even) and Ii

ab(odd) denote the number of even and odd functions, Θj
even and

Θj
odd, respectively, among |Ii

ab| functions Θj for the i-th T 2. Note that Ii
ab(even), I

i
ab(odd) ≥ 0

in the above definition, while Ii
ab can be negative.

3.4 U(Na) × U(Nb) × U(Nc) models with three families

Here, we consider the U(Na) × U(Nb) × U(Nc) models, which are derived from ten-

dimensional U(N) super Yang-Mills theory on R3,1×T 6/(Z2×Z ′
2) with the same magnetic

flux as in the previous subsection, e.g. Na = 4, Nb = 2 and Nc = 2. Suppose that four-

dimensional N=1 supersymmetry remains. In addition to the U(Na)×U(Nb)×U(Nc) vector

multiplets, the massless spectrum includes three types of bi-fundamental fields, (Na, N̄b),

(Nb, N̄c) and (Nc, N̄a). As section 2.5, we assign (Na, N̄b) and (N̄a, Nc) to left-handed and

right-handed matter fields. In this case, (Nb, N̄c) modes correspond to Higgs fields.

Now, we give explicit models. For simplicity, we restrict ourselves to models, which

satisfy the condition (2.33). For example, we introduce the following magnetic flux,

F45 = 2π







0 × 1Na×Na
0

−3 × 1Nb×Nb

0 −4 × 1Nc×Nc






,

F67 = 2π







0 × 1Na×Na
0

−4 × 1Nb×Nb

0 −1 × 1Nc×Nc






, (3.19)

F89 = 2π







0 × 1Na×Na
0

−1 × 1Nb×Nb

0 3 × 1Nc×Nc






.

This magnetic flux breaks the gauge group U(N) → U(Na)×U(Nb)×U(Nc), and satisfies

the condition (2.33). In addition, we consider the orbifold projections, e.g.

P = P ′ =







1Na×Na
0

−1Nb×Nb

0 1Nc×Nc






, (3.20)

which do not break U(Na) × U(Nb) × U(Nc). A single sort of U(Na) × U(Nb) × U(Nc)

gaugino fields remain through the orbifold projection.

Now, let us study the spinor fields λab. Their Dirac equations have the differ-

ence of magnetic fluxes, Ii
ab = (3, 4, 1). Thus, their zero-modes correspond to λab

+,+,+,

which transform λab
+,+,+(x,−ym, yn) → −λab

+,+,+(x, ym, yn) for both Z2 and Z ′
2 actions. In

general, these boundary conditions are satisfied with both types of the wave functions
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Ii
ef chirality wave function the total number

of zero-modes

λab (3, 4, 1) λab
+,+,+ Θj1

oddΘ
j2
evenΘj3

even 3

λca (−4,−1, 3) λca
−,−,+ Θj1

evenΘj2
evenΘj3

odd 3

λbc (1,−3,−4) λbc
+,−,− Θj1

evenΘj2
evenΘj3

even 6

Table 2: Three-family model.

Θj1
odd(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9) and Θj1

even(y4, y5)Θ
j2
odd(y6, y7)Θ

j3
odd(y8, y9). However,

note that this model has I3
ab = 1 and I3

ab(odd) = 0, that is, there is no zero-mode cor-

responding to Θj3
odd(y8, y9). Thus, the zero-modes correspond to only the wave functions

Θj1
odd(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9) and the total number of zero-modes is given by the

product of I1
ab(odd) = 1, I2

ab(even) = 3 and I3
ab(even) = 1, that is, there are three zero-modes.

The magnetic flux difference, Ii
ab = (3, 4, 1), which would have twelve families of (Na, N̄b)

without orbifolding. However, the orbifold projection reduces the family number from

twelve to three. Similarly, we can analyze zero-modes for λbc and λca. The result is shown

in table 2. The second column shows magnetic fluxes, which appear in their Dirac equa-

tions, and the subscript ef denotes ef = ab, ca and bc. The third and fourth columns

show six-dimensional chiralities of zero-modes and their forms of wave functions. The fifth

column shows the total number of zero-modes. This model has three families when we

consider λab and λca as left-handed and right-handed matter fields. The scalar fields asso-

ciated with λbc would correspond to Higgs fields. However, their Yukawa couplings are not

allowed in this model, because of the periodicity (3.8).

We show another model with the following magnetic flux,

F45 = 2π







0 × 1Na×Na
0

−3 × 1Nb×Nb

0 1Nc×Nc






,

F67 = 2π







0 × 1Na×Na
0

−4 × 1Nb×Nb

0 −5 × 1Nc×Nc






, (3.21)

F89 = 2π







0 × 1Na×Na
0

−1 × 1Nb×Nb

0 −4 × 1Nc×Nc






.

This magnetic flux breaks the gauge group U(N) → U(Na)×U(Nb)×U(Nc), and satisfies

the condition (2.33). We consider the following orbifold projections,

P =







−1Na×Na
0

1Nb×Nb

0 1Nc×Nc






,
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Ii
ef chirality wave function the total number

of zero-modes

λab (3, 4, 1) λab
+,+,+ Θj1

oddΘ
j2
evenΘj3

even 3

λca (1,−5,−4) λca
+,−,− Θj1

evenΘj2
evenΘj3

odd 3

λcb (4,−1,−3) λcb
+,−,− Θj1

oddΘj2
evenΘj3

odd 1

Table 3: Three-family model.

P ′ =







1Na×Na
0

−1Nb×Nb

0 1Nc×Nc






. (3.22)

Then, we can analyze the zero-modes as the above. The result for bi-fundamental matter is

shown in table 3. This model has three families of λab and λca. The scalar fields associated

with λbc can couple with them. The three families of λab and λca are quasi-localized at

points different from each other on the second T 2. Furthermore, one family of λab and

λca is quasi-localized at the same point as the point, where λbc is quasi-localized. That

could explain one family has a large Yukawa coupling with the Higgs fields, while the other

families have smaller Yukawa couplings. However, the full form of Yukawa matrices is

not completely realistic, because the up and down sectors of quarks have the same form

of Yukawa matrices. We would study Yukawa matrices numerically elsewhere taking into

account SU(2)R breaking.

Similarly, we can construct other three-family models, which satisfy the condi-

tion (2.33). Also the model construction can be done in a similar way when we do not take

into account the condition (2.33).

These two models are not completely realistic, but simple models to illustrate explicit

model building. One of important features is that the family number is smaller than the

magnetized torus models with the same magnetic fluxes and there are a variety of models

with a fixed number of families, e.g. three-family models. Another important feature in

generic model is that adjoint matter fields except gaugino fields are projected out by the

orbifold projection on T 6/(Z2 ×Z ′
2), although they remain on T 6/Z2. Its implication from

the viewpoint of model building is as follows. The above two models would correspond

to the three-family Pati-Salam model when Na = 4, Nb = 2 and Nc = 2. In intersecting

D-brane models, the Pati-Salam gauge group is broken by splitting D-branes to realize

the breaking U(4) → U(3) × U(1) and U(2) → U(1)2 and such splitting correspond to the

symmetry breaking by vacuum expectation values of adjoint scalar fields. However, we have

no degree of freedom of adjoint scalar fields. One of simple ways to realize the standard

gauge group in the above model building is that we start with U(6) × U(1)′a × U(1)′c. We

introduce the same magnetic fluxes as (3.19) and (3.21) for Na = 3, Nb = 2 and Nc = 1

in U(6) = U(Na + Nb + Nc). In addition, we introduce the same magnitude of magnetic

fluxes in U(1)′a and U(1)′c as those in U(Na) and U(Nc) blocks of U(N), respectively. Then

we can obtain supersymmetic standard models with three families of quarks and leptons.

Alternatively, we have the degree of freedom to introduce any field on the orbifold
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fixed points. That is, we can break the Pati-Salam gauge group into the standard gauge

group by vacuum expectation values of brane modes like the adjoint scalar field or a pair

of the Higgs fields (4, 1, 2) and (4̄, 1, 2). Another way to break the gauge symmetry is to

change the orbifold projection such that P and P ′ break the gauge group further.

In addition to the above Higgs fields, one can introduce any mode on the orbifold fixed

points. For example, all of three families may not be originated from bulk modes, but

some of quarks and leptons are originated from such brane modes. That is, we have an

interesting variety for model building. In appendix, we give two examples of models, whose

family numbers of bulk modes are not equal to three. Furthermore, such brane modes can

not couple with bulk modes, whose wave functions include Θj
odd for the i-th T 2, because

the wave function Θj
odd vanishes on the fixed point. That is a new aspect in our model. In

the usual orbifold models, bulk zero-modes correspond to even functions. Thus, they can

couple with brane modes. However, in our model some of bulk modes can not couple with

brane modes. This fact would be important for further model building.

4. Conclusion

We have studied D-dimensional N=1 super Yang-Mills theory on the orbifold background

with non-vanishing magnetic fluxes, in particular spinor fields. Our models have a rich

structure. Odd modes can have zero-modes and couplings are controlled by the orbifold

periodicity of wave functions. We can derive flavor structures different from those in

magnetized torus models. Thus, further study on model building would be interesting.

We have shown rather simple model building, although we could consider more generic

class of magnetized orbifold models. We have more degrees of freedom of extensions for

model building. One extension is to introduce brane modes as mentioned in section 3.4.

In addition, we can introduce magnetic fluxes on orbifold fixed points, which would be

independent of bulk magnetic fluxes and/or magnetic fluxes on different fixed points.6

We have started with D-dimensional N=1 super Yang-Mills theory. However, we

can add hypermultiplets e.g. for D=6. Also we have considered six-dimensions and ten-

dimensions, but we can consider eight-dimensional theory in a similar way. Moreover, we

can extend our analysis to several combinations of branes, whose dimensions are different

from each other like D9-D5 branes and other combinations.

We have restricted abelian magnetic fluxes, but in general non-Abelian magnetic fluxes

are possible, i.e. the toron background. That reduces the rank of the gauge group. Fur-

thermore, we can choose the orbifold projections, which break the gauge group further.

Moreover, we have considered the factorizable orbifold and non-vanishing magnetic fluxes

F2m,2m+1 for m = 2, 3, 4. We could extend to non-factorizable orbifolds [23] and more

generic form of magnetic fluxes.

Thus, we have various directions of extensions in generic magnetized orbifold models.

Including these extensions, the structure of models would become much richer. Hence,

further studies with these extensions are quite important.

6See e.g. [22].
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Ii
ef chirality wave function the total number

of zero-modes

λab (2, 1, 1) λab
+,+,+ Θj1

evenΘj2
evenΘj3

even 2

λca (2, 1, 1) λca
+,+,+ Θj1

evenΘj2
evenΘj3

even 2

λcb (4, 2, 2) λcb
+,+,+ Θj1

evenΘj2
evenΘj3

even 12

Table 4: Two-family model from the bulk.
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A. Models

Here we give two examples of models, whose family numbers of bulk modes differ from

three. That is, one model has two bulk families and the other has eighteen bulk families.

We start with the ten-dimensional U(N) super Yang-Mills theory on the background R3,1×
T 6/(Z2 × Z ′

2). We consider the trivial orbifold projections P = P ′ = 1.

In the first model, we introduce the following magnetic flux,

F45 =







0 × 1Na×Na
0

−2 × 1Nb×Nb

0 2 × 1Nc×Nc






,

F67 =







0 × 1Na×Na
0

−1 × 1Nb×Nb

0 1 × 1Nc×Nc






, (A.1)

F89 =







0 × 1Na×Na
0

−1 × 1Nb×Nb

0 1 × 1Nc×Nc






.

This magnetic flux satisfies the condition (2.33) and breaks the gauge group U(N) →
U(Na) × U(Nb) × U(Nc), although the orbifold projections are trivial P = P ′ = 1. Then,

we can analyze the zero-modes as section 3.4. The result is shown in table 4. This model has

two bulk families, when we consider λab and λca as left-handed and right-handed matter

fields. This flavor number is not realistic. However, in orbifold models it is possible to

assume that one family appears on one of fixed points.

We give another example. We use the same orbifold projections, i.e. P = P ′ = 1. We
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Ii
ef No. of zero-modes No. of zero-modes the total number

Θj1
evenΘj2

evenΘj3
even Θj1

oddΘ
j2
oddΘj3

odd of zero-modes

λab (6, 3, 3) 16 2 18

λca (6, 3, 3) 16 2 18

λcb (12, 6, 6) 112 20 132

Table 5: Eighteen-family model from the bulk.

introduce the following magnetic flux,

F45 =







0 × 1Na×Na
0

−6 × 1Nb×Nb

0 6 × 1Nc×Nc






,

F67 =







0 × 1Na×Na
0

−3 × 1Nb×Nb

0 3 × 1Nc×Nc






, (A.2)

F89 =







0 × 1Na×Na
0

−3 × 1Nb×Nb

0 3 × 1Nc×Nc






.

We study the spinor fields λab, in whose Dirac equations the difference of magnetic

fluxes Ii
ab = (6, 3, 3) appears. Their zero-modes correspond to λab

+,+,+, which trans-

form λab
+,+,+(x, ym, yn) → λab

+,+,+(x,−ym, yn) for both Z2 and Z ′
2 actions. These bound-

ary conditions are satisfied with the wave functions Θj1
even(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9)

and Θj1
odd(y4, y5)Θ

j2
odd(y6, y7)Θ

j3
odd(y8, y9). The number of zero-modes corresponding to

the former wave functions is given by the product of I1
ab(even) = 4, I2

ab(even) = 2 and

I3
ab(even) = 2, while the zero-mode number corresponding to the latter is given by the

product of I1
ab(odd) = 2, I2

ab(odd) = 1 and I3
ab(odd) = 1. Thus, the total number of λab

zero-modes is equal to 18(= 16 + 2). Similarly, we can analyze zero-modes for λbc and

λca. The result is shown in table 5. For these zero-modes, only two forms of wave func-

tions are allowed, that is, one is Θj1
even(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9) and the other is

Θj1
odd(y4, y5)Θ

j2
odd(y6, y7)Θ

j3
odd(y8, y9). The numbers of zero-modes corresponding to the for-

mer and latter are shown in the third and fourth columns. Six-dimensional chirality of all

zero-modes correspond to λ+,+,+ and they are omitted in the table.

This model has 18 families. It seems that this family number is too large. How-

ever, we can reduce the light family number if we assume anti-families of (N̄a, Nb)

and (Na, N̄c) matter fields on fixed points and their mass terms with the above fam-

ilies of matter fields. Such mass terms are possible for zero-modes corresponding to

Θj1
even(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9). Thus, when we assume n anti-families, the num-

ber of light families reduces to (18 − n). This type of models has an interesting aspect,

that is, some families of matter fields correspond to Θj1
even(y4, y5)Θ

j2
even(y6, y7)Θ

j3
even(y8, y9)

and other families of matter fields correspond to Θj1
odd(y4, y5)Θ

j2
odd(y6, y7)Θ

j3
odd(y8, y9). In
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general, other combinations of wave functions can appear in zero-modes of matter fields.

Such asymmetry appears in this type of models. Thus, their flavor structure is rich.
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[9] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, D = 4 chiral string

compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073];

Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132].
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